

Principles and rules of uncertainty and its place in the laboratory for test results

Mahnaz Bigdeli Bs In laboratory science Ms In MBA bigdelimahnaz@yahoo.com

Bigdeli.qc@gmail.com

۳۱ مرداد و ۱ شهریور ۱۴۰۳

سنندج

کارگاه آموزشی سیستم مدیریت کیفیت در آزمایشگاه های تشخیص پزشکی بر مبنای ISO 15189:2022

ISO 15189: 2022 (7-3-4)

- The MU of measured quantity values shall be evaluated and maintained for its intended use, where relevant.
- The MU shall be compared against performance specifications and documented.
- MU evaluations shall be regularly reviewed.
- MU information shall be made available to laboratory users on request.
- If the qualitative result of an examination relies on a test which produces quantitative output data and is specified as positive or negative, based on a threshold, MU in the output quantity shall be estimated using representative positive and negative samples.

Concept Of Uncertainty

What's The Problem?

"We wish to add that "few are truly aware of how to calculate MU in medical laboratories".

Mario Plebani, Andrea Padoan and Laura Sciacovelli Measurement uncertainty: light in the shadows https://doi.org/10.1515/cclm-2020-0134

TECHNICAL SPECIFICATION

Medical laboratories — Practical guidance for the estimation of measurement uncertainty

ISO/TS

20914

First editi

2019-0

Normal (Gaussian) Distribution

Uncertainty Calculation Methods

• Bottom-up:

- Determining different sources of uncertainty
- Establishing a mathematical model
- Estimating partial uncertainties
- Combining under the established model

• Top-down:

Experimental evaluation of uncertainty in the final outcome

Which Method?

• Bottom-up:

- Usually employed by **reference laboratories** to obtain ISO 17025 and 15195 certificate
- The application in medical laboratories is **too complicated** and has encountered many practical problems and objections.

• Top-down:

- Simpler and represents a **good alternative** to the previous approach
- Estimates MU by using **IQC**, commercial **calibrator** information, and **bias correction**

Concept Of Uncertainty

Uncertainty Variables

1. Long-term imprecision data (SD or CV) obtained for IQC, u_{Rw}

2. Uncertainty of end-user calibrator values, u_{cal}

3. Uncertainty of bias, *u*_{bias}

Challenges Of Uncertainty Calculation

- u_{RW}
- Changing LOT of IQC
- Changing LOT of reagents
- **u**_{cal:} Values for *u* cal should be obtainable on request from IVD
- **u**_{bias:} Some national regulations may prohibit bias correction.

If multiple IQC levels are used, U must be calculated separately for each level.

State Of Uncertainty

Optimum MU<0.25 I(%)

Desirable MU<0.5 I(%)

Minimum MU<0.75 I(%)

Medicine is a science of uncertainty and an art of probability.

William Osler

